

St.Xavier's College Physics Club

(SXCPC)

Maitighar, Kathmandu

Question Of the Month-November Series

In a star, hydrostatic equilibrium is an equilibrium maintained between the gravitational pressure (P_0) of the star, the gaseous pressure (P_g) of the star, and the radiation pressure (P_r) of the star. It helps to prevent the star from collapsing under its own gravity and also prevents extreme star flares. The condition of hydrostatic equilibrium is: $P_g + P_r = P_0$.

Here $P_g = \frac{\rho kT}{\mu}$

where ρ is the density of the gas, μ is the mean molecular weight, k is the Boltzmann constant, and T is the temperature of the star.

Questions:

a) BAST-01A, a hypothetical star with a mass of 3.282×10³¹ kg and a radius of 6.171×10¹¹ meters, violently exploded, becoming a supernova. If the mean molecular weight of the star constituents was 0.6 and their density was 0.00003334 kg/m³, Find the temperature of the star just before the explosion.

b) Explain the process by which a High Mass Star becomes a blackhole or a supernova.